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Refinement of MSG

Abstract

This report describes the second phase of an experiment designed to demonstrate

techniques for software development and evolution. The experiment involves the

production of a family of functionally similar systems on dissimilar host computers with

markedly different operating systems. The basic technique used is machine-assisted

stepwise refinement from an abstract model program that embodies the desired

characteristics of the family members without overconstraining the individual

implementations.

The example system developed in this experiment is MSO, the interprocess

communication component of the National Software Works. Our experiment consists of

producing an abstract model of MSG and realizing an instance of it, to study the

techniques of abstraction and refinement and to test methods for managing the

refinement process.

The first phase of the project, creation of an MSG model, is discussed in [Model].

The second phase, refinement of the model, is described in this report. The first part of

the report summarizes our work. The second part describes our approach to program

development. The third part discusses our experiment with MSG.

I4,, .... # ",,.
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Summary

An experiment in software development has been undertaken at Harvard's Center

for Research in Computing Technology. Its purpose is to test techniques intended to

reduce the cost and enhance the reliability of software development and maintenance.

The experiment involves the production of a system of moderate size and

complexity that has been implemented on several different types of computers by

conventional means. The example system is thus actually a family of programs sharing

a common specification but having a number of markedly different implementations.

Our hypothesis is that the development and maintenance of a program family can

be made less costly and more dependable if the individual family members are derived

from a common ancestor, which we call the abstract model of the family.

* I Concrete program instances are derived by a sequence of refinements from the

abstract model. Each refinement encapsulates related design decisions that distinguish a

class of concrete instances. A refinement may give definition to a procedure, a data
4 structure, or a control pattern left unbound at the abstract level, or it may modify or

* augment such constructs. The program family thus forms a tree with the abstract

model at the root, groups of refinements as branches, and concrete instances as leaves.

We have developed, and are continually improving, tools that aid developers by
maintaining the family tree in a data base and by mechanizing the task of applying

refinement sequences. With these tools, a new member of an existing family is less

expensive to produce than one developed separately, because the basic model and most

of the refinements that yield the new version will be shared with existing instances.

Moreover, modifications to broad subfamilies can be effected in unison, by applying

altered refinements that reflect revised design decisions and by simply reapplying those

not affected.

The specific system we are experimenting with, called MSG, is an ARPANET

interprocess communications handler used by the National Software Works. It runs

under TENEX, TOPS-20, OS/MYT, Multics, and UNIX. MSG is thus a good paradigm

for our experiment, since it is a moderately complex family of programs that must
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function siialy on highly disparate hosts.

Our goal was to test our abstraction and refinement methodology by producing.

I from our abstract model,. TENEX and UNIX instances and comparing them to the
) existing conventionally produced implementations. We investigated refining to those

systems but did not produce instances for them. For various reasons a related project

was not completed, which we needed to translate our refined instances, written in

interpreted EM, into a lower-level compiled language allowing stand-alone execution.

Nonetheless, we have produced a refined version that runs under the ECL interpreter

extended by a package that supports multiple processes. The interpreted version has

been used to debug the model, running it with debugging tools in the benign

environment of the interpreter.

We found that, given a carefully designed abstract model, it was relatively

*straightforward to produce a refined instance. Having anticipated refining while

working on the model, we were able to develop refinements without difficulty, and no

significant changes in the model were needed after refinement development started.
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Theory

Methodolog

There is much concern over the cost of software design, implementation, and
maintenance. This has stimulated research in areas from language design to program

verification. The goal of our work at Harvard is a programming methodology,

supported by appropriate tools, that makes software development and maintenance more

efficient by promoting clear, high-level design, and by having different implementations

of the same system share a single high-level description. The basic technique is initially

to write the high-level program, focussing on the fundamental aspects of the problem to

be solved. Later, details are added. These details are added in stages, so that later

details are more efficiency-related and computer-type-specific. Thus the details

necessary to produce an efficient, running program do not intrude on the basic

specification of the algorithm. For example, at some point the high-level program may

sequentially examine the elements of a set, in which case the iterator

ForEach E In S Do .. End;

may be used as an intuitively clear construct. Later, implementation details of ForEach

are supplied in terms of conventional primitives, for example, a FOR loop. The point is

to layer the programming process, keeping the fundamental program clear and general,

and adding groups of related implementation details as needed. We call the high-level

program the abstract model: 'abstract' because it is high-level, and 'model' because it is

a structure that forms the basis for actual running programs. Note that 'abstrace does

not imply a formal mathematical object. We call the details added to the model

refinements.

The clarity of the model and the layering of refinements aid maintenance.

Programs continue to be used many years after they are written, and, as circumstances

change, modifications are required. Such modifications are often not made by the

implementers. Thus changes tend to be ad hoc and incorrect and do violence to the

basic structure of the programs, making them less efficient and harder to comprehend.

In contrast, the hierarchical form of the abstract model and refinements, separating

basic structure from implementation details, makes the structure clear and more easily
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funderstood. Furthermore, grouping related refinements together encapsulates and
localizes implementation decisons, making it easy to review and change them. Basically,

the program itself reflects the hierarchical nature of its design and implementation.

Modelling and refinement also are efficient means of producing and maintaining

program families. A family of programs shares a common specification but has a

number of different implementations, or instances. Examples of program families are

compilers of the same programming language for different computers, operating systems

providing similar environments on different physical configurations, and communications

processors observing a common protocol while running on different types of host

machines, The abstract model embodies the family specification, and different groups of

instance-specific refinements applied to it produce different instances. Some instances

I ~may share refinements. T7hus the family takes the form of a tree, with the abstract

model as the root, groups of refinements as branches, classes of instances sharing

refinements as interior nodes, and individual instances as leaves. Once the abstract

model is written, a new instance may be produced cheaply by writing the appropriate

refinements. Further economies are realized through shared refinements. Maintenance

is greatly simplified since changes in the specification - the abstract model - are

reflected at once in all instances. A single algorithmic specification is an effective

means of insuring common behavior among all family members, compared to a

functional specification implemented independently on different hosts.

Technique

Our models and refinements are written in ELI [ECL, which facilitates

abstraction and refinement in two major ways.

First, ELI is an extensible language, with user-definable modes and syntax

User-defined modes are built out of basic ones and may include user-provided functions

invoked upon generation, conversion, assignment, selection, printing, and determination

of dimensions. Syntax can be extended by giving any symbol one of several parsing

properties: prefix, infix, matchfix (two symbols paired, for example, ( and )), or synfix

(one symbol given the properties of another, for example, ForEach given the properties
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of FOR). With these facilities modes and syntax are used in the abstract model, and

their underlying functionality is defined and augmented in refinements.

Scnthe EL system, which implements the ELI language, is an interpretive

one, with programs represented internally as list structure. This makes easy the

automatic analysis and modification of programs by other programs. For refinement we

use a pattern-driven transformation tool that replaces one syntactic pattern, possibly

including match variables and qualified by a predicate, with another. This tool

substantially increases our ability to modify and augment the abstract model.

The refinement process is managed by the Program Development System

[Refinement] [PDS]. The PDS provides the environment for defining and modifying an

abstract model and its refinements, and for producing refined instances.

The model is defined in terms of modules, collections of related entities. An entity

is a procedure, mode, or data object. Entities may be clustered in groups within a

module. Modules are insulated from one another; contact between them is defined by

export and import lists.

Refinements are entities as well. They may define or augment a procedure, mode,

or data object, or specify a transformation pattern and its replacement (a rewrite).

They may be applied singly or in groups to an entity, to a group of entities, to all the

entities in a module, or to a number of modules.

The PDS produces a program instance by taking each module of the abstract

model and transforming the entities in it using the proper refinements, then merging all

the modules. The PDS recognizes when an entity is modified in the course of

development, so when a new version of an instance is required only those entities

dependent on modified ones are retransformed.

Managing refinement is the central function of the PDS, but it also supports the

programming process in other ways. It uses an editor that has knowledge of entities and

EL structure. It supports various analysis tools (for example, one that locates
undefined identifiers). It aids interpretive debugging and compilation. In these ways it

extends the ECL system, supplying structure not found in the language.
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Our technique, then, uses not just data abstraction, extended syntax, or

pattern-driven transformation, but all three, in a sophisticated programming system

possessing substantial knowledge of the programming language and the means of

abstraction and ref'mement. A program, in the form of an abstract model and

refinements, embodies the hierarchical process of design and implementation. Our

method is not a discipline that keeps people from writing bad programs, but an

environment in which it is easier to write clear and maintainable ones.

i
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Practice

Implementing A Program Fmnily

In order to develop and test our methodology and tools we have used them to

produce a family of programs. The system we have chosen is a network interprocess

communications handler that runs on various types of computers. It is apt for our

purposes since it must function similarly on different hosts according to a common

specification.

The system is MSG, which runs under various operating systems on various

computers on the ARPANET. It starts and manages the local processes using it, and

routes messages between them and other processes on other hosts. Interhost-interprocess

messages are multiplexed, using a common protocol, over network connections between

MSG instances. The protocol includes items that facilitate flow control, so that the

burden of buffering messages can be distributed between sender and receiver when

traffic is heavy. The protocol also provides for interprocess signalling of exceptional

events and for establishing direct network connections between processes. MSG is thus

complex enough to provide a serious test of our tools. We wrote an abstract model of

MSG (described fully in [ModelD, produced an instance that runs under an extension of

the ECL interpreter [CI], and investigated refining to TENEX and UNIX.

We implemented MSG in three phases. First, we defined the overall structure of

the abstract model, dividing it into major functional units, and designed a few basic

abstractions used throughout. Our goals were host-independence, clarity, and

refineability. Second, we coded a procedural embodiment of the MSG Design

Specification [MSG] using the results of the first phase as foundation. Our main

concerns were understanding and correctly transcribing the details of the MSG protocol.

While this involved much work (a substantial body of code was generated), it was a

relatively straightforward and low-level enterprise. Third, we produced the refinements

necessary to realize a working MSG. At this point host-dependent issues were

paramount. This stage was also relatively easy, since we had considered refinement

from the first. The remainder of this section summarizes the results of the first phase,

describing in general terms the model and its primary abstractions.

j- 7 z
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The basic function of MSG is to respond to local processes on the one hand and
the network on the other, routing data between them. The form of our abstract model

follows this functional division, having three major parts, each a module - one handles

local processes, one handles the network, and one routes data, via queues, between the

first two. Other modules provide global definitions, initialization, and error recovery.

All parts of MSG share the data base of queues that the routines in the queue

module maintain. This shared data base gives us great flexibility, for it means that

intra-MSG process boundaries need not be specified in the model. This allows us to

tailor process structure to particular hosts and makes possible the diverse structures

found in figures 1, 2, and 3. In fact, without major effort we can test different process

structures on the same host to find an optimal one.

clarity in the model is promoted by abstract queue managers and iterators, which
manipulate the data base. These constructs are easily understood at the abstract level

without reference to their implementation, and keep from the model the details of queue

threads and their use. The abstractions are also few in number and uniform throughout
the model. Examples of them and their refinements are found in the next section.

The most difficult construct to define was a host-independent mechanism for
interprocess communication and network input/output. It had to be simple and clear,

yet refine to the varied primitives of our target hosts. Refineability was a crucial test;

some designs failed because they were too general to be refined at all, and others
because they were too specific to be refined on some hosts. Our final construct, called
a channel, is a union of the central features of the actual primitives we must use. It is

a named data path, possibly bi-directional, that, when used, may block or interrupt the

processes using it. It may be opened and closed, and data may be sent and received

over it. It refines into concrete CI channel primitives, TENEX interprocess core

mapping and network access functions, and UNIX pipes and ports.

:17
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Examples Of Abstracdon And Refinement

The following representative abstract constructs and their refinements illustrate the

technique used in the implementation of MSG. To keep the examples brief, some details

in the actual refinements are omitted. The refinements are common to all instances

(unlike others that are lower-level; for example, those for channels) and are collected in

one module.

Consider the abstract primitives

Enqueue Message AtFrontOf InputMessageQueue,

and

ForEach Message FromFrontOf OutputMessageQueue Do ... End;

They are intuitively clear - one inserts a queue element at the front of a queue, and the

other iterates over a queue, sequentially producing each element in it - and are used in

this form in the abstract model. They are not, however, part of the ELI base language.

They are transformed by refinement to executable code.

A queue can be implemented in many ways. None need concern us at the abstract

level. During refinement, however, we select the best implementation for MSG, taking

advantage of the way MSG queues behave. Since any queue element can appear at most

once in each of a number of known queues, we add, by refinement, in each queue

element a queue thread for each known queue, and make the queue primitives use the

proper thread.

More specifically, a Messagefflock is a data structure used in the abstract model

(its fields include the text of an interprocess message and the names of the source and

destination processes). A MessageHandle, of which Message is an instance, is a pointer

to a MessageBlock. A MessageHandle may appear in one or both of two
MessageQueues, an InputMessageQueue and an OutputMessageQueue. With the

following refinements we add queue thread fields for the two queues to MessageBlock,

and create the queue mode.
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MessageBlock Has
AddedFields(InputMesageQueue:MessageHandle,

OutputMessageaueue:MessageHandle);
MessageQueue Is STRUCT(Front:MessageHandle, Count:INT);

Consider the Enqueue primitive. It must splice a queue element into a queue by

setting the front of the queue to the new element and the queue's thread in the new

element to the element that was at the front. The following rewrite defines how the

abstract construct is to be transformed. (Rewrites have the form search-pattern (->

replacement-pattern, with pattern variables in italics and pattern predicates in italics.)

Enqueue element AtFrontOt queue
(-)

BEGIN
queue.Count (- queue.Count + 1;
element.queue (- queue.Front;
queue.Front (- element;

END;

When applied to the abstract instance above the rewrite produces the following code:

putMessgeQueue.Count (- InputMessageQueue.Count + 1;
Message.lnputMessageQueue <- InputMessageQueue.Front;
kIputMessageQueue.Front <- Message;

The ForEach primitive must scan the length of a queue, starting at its front,

obtaining each successive element from the thread field of its predecessor. The

following rewrite generates the appropriate code.

ForEach element FromFrontOf queue Do body End
~<-4

BEGIN
DECL element:MessagHandle BYVAL queue.Front,
TO queue.Count

REPEAT
body;
element (-VAL(element).queue;

END;
END;
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The actual refinement of ForEach is considerably more complicated - it involves

retarded pointers and storage management for insertion and deletion within the loop.

Even though we are concerned with clarity, and not efficiency, at the abstract

level, we can still produce efficient, optimized code by refinement. For example, we

implement sets in terms of both sequences and lists, and choose an implementation for a

particular set depending on how the set is used. Similarly the abstract set iterator

ForEach E In S Do ... End;

has refinements defined for both set representations. The refinement applied in a given

instance is based on the mode of the set being refined. The sequence refinement

appears as

ForEach element In set Do body End
Where set HasMode SEQ(mode)

<->

FOR ForEachindex TO LENGTH(set)
REPEAT

DECL element.node LIKE set[ForEachndex];
body;

END;

and the list refinement as

ForEach element In set Do body End
Where set HasMode PTR(mode)

(-)

BEGIN
DECL ForEachPonter:PTR(mode) BYVAL set;
REPEAT

ForEachPonter a NIL > NOTHING;
DECL element:mode UKE VAL(ForEachPointer);
body;
ForEaDPointer <- element.set;

END
END;

The rewrites are applied only to patterns fulfilling the requirements of the When

predicates.
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Producing An Instance

The process of transforming the MSG abstract model via refinements into a

running program is managed for us by the PDS and consists of four stem illustrated in

g 4.

First, each individual abstract module (for example, the one containing the queuing

routines) is transformed with the host-independent refinements for that module (which

are themselves gathered in a module). The result is a lower-level, host-independent

version of the abstract module, shared by all MSG instances. For example, queue

threads are added to data structures at this point.

Second, in a similar manner each host-independent module is transformed by

module-specific, host-dependent refinements, producing a host-dependent module. For

example, channel refinement is done at this point.

Third, each host-dependent module is made into runnable code by importing from
other specified host-dependent modules globally available entities needed to complete the

module's realization. For example, external references are resolved at this point.

Fourth, all rumnnable modules are combined into one executable program.

Not all modules go through both steps one and two. Some have no

host-independent version and others no host-dependent one. For example, the
initialization module is taken from abstract code directly by step two to its

host-dependent form and then by step three to runnable code, while the queue module is

I taken from its host-independent form after step one directly to runnable code by step

three. On the other hand, both the local process and network modules go through all

four steps.

Steps one and two are actually the parts of a larger single process, the application

of module-specific refinements. The PDS simply applies a series of refinement modules

in order to an abstract module. The nature and number of module-pecific refinement
steps depends on the program family, each step encapsulating related design decisions.

* In general, higher-level refinements are grouped together and applied before lower-level

- . .-
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ones, promoting clarity (keeping levels of abstraction distinct) and economy (refiements,

shared among instances exist in one module only). The more family members there are,

the more steps there tend to be, due to refinement sharing among members. For
example, if we produced a TENEX instance, we would divide step two into two steps,
first applying host-dependent refinements common to aIand TENEX, and then applying

those particular to each system.

The refinements applied in steps one and two remain for global application in step

three. Thus the low-level definitions and rewrites, both host-independent and

host-dependent, of a given module are available to other modules in the third step. In

this step, for example, global references to the queue thread fields of a Message Block

ore properly resolved, and some common channel rewrites are applied to several

modules.

The PDS automatically performs ail four refinement steps for us. We simply

provide it with modules and refinement instructions (what refinements should be applied

when to which entities), and it generates an MfSG instance. It guarantees that names

local to a module are hidden from the global environment (step three), that data objects

are initialized properly (step four), and that the load order of objects in the final

program is correct (step four).

Conclusions

After we had given considerable thought to the form of our abstract model and a

few constructs widely used throughout it, we found it straightforward to code the model

and refine it. This ease was the reward for our hierarchical approach to design,

supported by our tools. We could give adequate attention to the high-level issues of

program structure, meaningful modes and operators, and host-independence without
getting mired down in details. Furthermore, these issues found expression, not in design

documents used for reference, but in actual primitives usable in coding. Since we

considered initially the broad, difficult problems of design and had a proper medium for

expressing our solutions, our implementation effort was relatively easy and contained few

surprises. Nor did abstraction exact a great run-time price, because our refinement tools
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and techniques allow us to produce efficient code.

Implementation was made easier, and understanding our model more difficult, by

our decision always to produce abstractions that were obviously refineable. We could

have produced a model in a clearer form, for example, in the form of a finite state

machine, but refinement would have been problematic. Still, we found it easier to read

unfamiliar model code than code produced conventionally.

Our technique provides the greatest benefit when programming is undertaken in a

hierarchical manner. It encourages comprehension before implementation. Nonetheless,

implementation of any large new system requires experimentation and backtracking.

Our tools facilitate such iterative development by making the system easy to dismantle

and reconstruct.

Most of our effort was spent designing and coding the model; substantially less was

spent on refinement. Having found realization of an instance relatively cheap, given an

abstract model, we recommend the abstraction-refimement paradigm as an economical

one for development of a program family. In terms of volume, most of the MSG code

is in the abstract model, two and a half times as much being there as in the

refinements. The general and host-specific refinements are of equal volume. By type,

the refimement entities are composed of roughly equal numbers of rewrites and of

definitions of low-level procedures, modes, and data objects. There are about a third as

many augments to existing definitions as there are new ones. Most of the rewrites are

of general applicability; only about a tenth of them are substantial host-specific

modifications to a single procedure.

We also recommend the abstraction-refinement paradigm for program families

because the abstract model serves as a complete, universal, operative definition of family

behavior. For example, the MSG Design Specification does not fully defime error

handling, so that some conditions may or may not be errors, depending on the

interpretation of the implementers. Thus a robust implementation must anticipate the

various possible responses to a possible error. Having all implementations descend from

a single procedural definition eliminates this problem.

--
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I Programming is at once easy (the primitives one deals with are simple and
relatively few) and very difficult (building a large, correct, complex structure from those

primitives requires substantial skill). Many efforts have been made to make the
programming process less error-prone and more efficient. Some techniques reason about

the program (verification), some develop new primitives (language design), some provide

mechanisms for the programmer to define new primitives (extensibility, abstraction), and

some build tools that support program development and management. Our work centers

around the last two approaches, allowing and managing a hierarchy of program

structure. We keep complexity and detail from program development until they are

- 7ssz.
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Notes to Figures 1, 2and 3

The ellipses are operating system processes; the arrows are channels; the dotted line
delineates the boundary of the shared data base of queues.

The CI implementation is relatively unconstrained by its operating system. Thus
each logically separate function is assigned its own process.

On TENEX processes are expensive, so they are minimized (under the constraint
that network input is blocking - hence the several network input servers). All user
processes of a given class are handled by a single server, and all network output is
performed by one process.

The UNIX implementation is radically different, due to the lack of a facility for
sharing core. All functions that must access the data base of queues are in one fork,
with I/0 functions that may block supported by ancillary forks. Scheduling of tasks
within the main MSG fork is done by NWG itself.

* Note to Figure 4

The ellipses are modules; the arrows are refinement steps.

* Note on CI

We desired to test MG in an environment supported by the ECL interpreter, with
our debugging tools available. To accomplish this we needed the interpreter extended to

poiesome of the functionality of an operating system. Building on work done for a
I; doctoral dissertation, we have implemented an extension that supports multiple processes

and scheduling, timing, interrupts, completion events, and an MO-like channel facility
that subsumes I/0 and interprocess communication.
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FigureI - CI MG
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I Figure 2 - TENEX UMG
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Figure 3 - UNIX MG
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Figure 4 - Transforming MG
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